數據質量水平與商業智能的關系
當無法通過商業智能系統和報告系統提供準確的數據時,業務總體上都會受到影響。
以下是為創建報表的商業智能系統提供不可靠數據所造成的一些后果:
業務負責人:不準確的管理報告導致決策不夠明智。
合規主管:合規性法案要求公司能為其財務和合規報表提供一定的透明度和可審計性。
業務分析師:如果業務分析師花費過多時間在多個商業智能系統間手動搜索和整理信息以更新和修正報表,則業務分析師的生產率會受到影響。此低效的工作會直接影響成本和營利能力。
這些業務問題的根源在于沒有關于客戶、產品、渠道合作伙伴和供應商的唯一真實版本。由于在處理每個業務流程的不同系統間收集、存儲和管理這些數據(亦稱之為參考數據或主數據),因此,需要正確地解析重疊和沖突的參考數據,以獲得唯一真實版本,從而帶來寶貴而可操作的洞察力。許多組織擁有數十或數百數據庫,并且在這些數據庫中有維護相同核心參考對象的數十個(有時為數百個)不同的應用程序,而這些核心參考對象還具有重疊的屬性。
商業智能系統的用途是以中立的視角報告取自多個系統的現有數據。商業智能系統可以為維度分析進行一些累積工作,但是設計或配備商業智能系統并非為了創建唯一的真實版本。在取自應用程序孤島的客戶或產品數據中存在的不一致會對數據倉庫中運行的分析可靠性產生消極的影響。
總而言之,企業的商業智能只會與企業的數據質量水平相當。