數據質量角色
對于增強數據資產準確度和價值而言,將數據質量規則與活動(探查、清洗和監測)和MDM流程相集成顯得十分關鍵。在啟動任何MDM項目之前,您都需要了解源數據的內容、質量和結構。在數據源進行的數據探查使數據管理員和數據倉庫管理員能夠在數據進入MDM系統之前,快速發現和分析跨所有數據源的所有數據異常。此流程可極大加快從MDM實施中獲取價值。
由于數據清洗增強了數據的準確度,帶來了數據完整性,并從源頭增進了數據的可信度,因此數據清洗改善了MDM系統中的數據一致性。一旦源數據進入MDM系統,它將接受數據質量處理,其中包括驗證、更正和標準化。MDM系統存儲了在數據清洗前后的整個歷史記錄,從而開發人員不必再跟蹤數據倉庫中的數據沿襲。
最后,數據質量度量標準使數據倉庫管理員能夠更好地監控參考數據的質量,并確保可以長期持續使用高質量的數據。
因此,從技術角度看,實施MDM和Informatica Data Quality,作為數據倉庫中主數據的確定來源,可以從提取、轉換和加載(ETL)流程中簡化數據集成。此方法可極大減低與數據倉庫有關的整個開發和維護工作。通過建立數據質量度量標準和定義數據質量目標,數據倉庫管理員和數據管理員能夠更好地監控參考數據的質量,并確保隨著時間的推移能夠跨企業持續使用高質量的數據。MDM簡化了對數據倉庫維度更新的處理,因為用于確定更改內容的所有邏輯均封裝在MDM系統中。
此外,MDM系統可以卸除大多數數據倉庫的歷史記錄跟蹤負擔,使數據倉庫僅管理它需要為進行聚合而應跟蹤的變更。此系統可帶來更小的數據倉庫維度以及對負荷和查詢性能的重大改進。運用MDM和Informatica Data Quality將最終降低數據集成的工作量,提高從商業智能和報表推導的洞察分析的質量,確保能夠從為商業智能增效的數據倉庫方案中獲得預期的價值和投資回報。